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ABSTRACT: The calculation of the molecular weight distribution (MWD) of a polymer
from its rheological properties is an attractive method since rheological measurements
are comparatively faster and cheaper than the classical gel permeation chromatogra-
phy technique (GPC). The calculation, however, still has some drawbacks, such as the
sensitivity of the mathematical solution involved (ill-posed problem) and the limited
frequency range covered by commercial rheometers, which can be especially critical for
crystalline polymers, for which the time–temperature superposition is of limited worth.
In this article, a new approach for evaluating the MWD from the storage modulus and
the relaxation modulus curves is proposed. The method, based on the use of a neural
network model, was employed to evaluate MWD from rheological data obtained with
different isotactic polypropylene resins. The results show that this approach can be
successfully used to compute MWD curves and should expand the range of application
of the rheological technique. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1416–1423,
2000
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INTRODUCTION

In recent years, substantial effort has been made
to calculate the molecular weight distribution
(MWD) curve of a polymer from its rheological
properties, mainly from the relaxation spec-
trum1–4 and the steady state shear viscosity.5,6

The advantages of the use of this technique,
compared to traditional gel permeation chroma-
tography (GPC) are related to the lower costs and
shorted analysis times. In addition, the sample

does not need to be dissolved, and this technique
is more sensitive to the high-molecular-weight
fractions.

In order to calculate the MWD from the relax-
ation spectrum, the dual reptation theory7,8 can
be used. This theory allows one to correlate the
relaxation modulus G(t) of the polymer with the
molecular weight of each polymeric fraction by
the following equation:

G~t!
GN
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where GN
0 is the experimentally determinable

plateau modulus, wi is the weight fraction of poly-
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mer chains with molecular weight Mi, and F(M,
t) is the relaxation function.

The relaxation function F(M, t) represents the
contribution to the relaxation modulus that each
monodisperse fraction of the polymer has at each
time t. Different forms have been assumed for
this relaxation function, for example, the BSW
model3 that gives

F~M, t! 5
a

ta E
0

c

x~a21! exp~2t/x! dx (2)

where

Je
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t~M! 5
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0 (4)

In these equations, t represents the relaxation
time, Je

0 is the equilibrium compliance, a is a
constant (5 0.56), h0(M) is the zero-shear viscos-
ity of a monodisperse polymer of molecular weight
M, and x is a dummy variable.

From dynamic rheological experiments, the
shear storage modulus G9(v) and the shear loss
modulus G0(v) can be obtained. From these mod-
uli, the relaxation spectrum and the relaxation
modulus can be computed.9,10

Extracting the MWD from eqs. (1) to (4) is a
typical, so-called, ill-posed problem, meaning that
even small experimental errors in the determina-
tion of G(t) can generate large deviations in the
final solution. One way to minimize this problem
is to use the regularization method of Tikhonov as
given in Hansen.11

Another difficulty is related to the experimen-
tal rheological technique for measuring G0(v) and
G9(v). It is well known that commercial rheom-
eters have a limited frequency span, usually be-
tween 1023 and 102 rad/s. This narrow frequency
span does not constitute a problem when dealing
with amorphous polymers because the frequency
range can be extended if the time–temperature
superposition principle is used.12,13 However, for
crystalline polymers, like isotactic polypropylene
(i-PP) this limitation in the frequency makes it
difficult to reach the terminal relaxation region
that occurs at very low frequencies, especially
when the polymer has a broad MWD.14 The de-
tection of the plateau modulus that occurs at in-

termediate frequencies also becomes difficult. In
other words, the thermal analysis window of the
polymer becomes very narrow, due to the surging
of the polymer crystallization; consequently, the
applicability of the time-temperature superposi-
tion principle also becomes limited.

Due to these experimental problems, the calcu-
lations of MWD from dynamic rheological proper-
ties have predominantly focused on amorphous
polymers since studies with crystalline polymers
show high discrepancies between the results from
the rheological measurements and the GPC
curves.3

In this work, an alternative approach for de-
termining the MWD from rheological properties
is proposed. The molecular weight distribution is
obtained by a neural network model, which uses
the shear storage and shear loss moduli curves as
input variables, together with the temperature at
which the rheological curves were measured. The
validity of the procedure was illustrated for dif-
ferent i-PP resins.

NEURAL NETWORKS

Artificial neural networks (ANN) have been ac-
claimed as a universal approximator and their
applications in several fields are growing rapidly.
Neural networks possess the ability to “learn”
nonlinear relationships without actually model-
ing the physical and chemical laws that govern
the system. In this sense, ANN must be regarded
as empirical relationships. The success in obtain-
ing a reliable and robust ANN depends strongly
on the choice of process variables involved, as well
as on the quality of the available set of data and
the domain used for training purposes.15

The most commonly employed ANN is the so-
called feed-forward network with one hidden
layer, as shown in Figure 1. Each processing neu-
ron (represented by a circle in Fig. 1) calculates
the weighted sum of the interconnected signals
from the previous layer plus a bias term [eqs. (5)
and (7)] and then generates an output through its
activation function [eqs. (6) and (8)]. Thus, for a
neural network with N input variables, NH neu-
rons in the hidden layer, and P output variables,
the equations for the hidden layer are as follows:

Sj 5 O
i51

N

Wi,jXi 1 WN11,j j 5 1, 2, . . . NH (5)
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Oj 5 f~Sj! 5
1

1 1 exp~2Sj!
j 5 1, 2, . . . NH

(6)

and for the output layer:

Sk 5 O
j51

NH

Wj,kOj 1 WNH11,k k 5 1, 2, . . . P (7)

Ok 5 f~Sk! 5
1

1 1 exp~2Sk!
k 5 1, 2, . . . P

(8)

The “training” or “learning” of the ANN con-
sists of changing the network parameters, the
weights W, in order to minimize the quadratic
deviation E between the experimental values Yk
and the predicted output Ok, defined as

E 5 O
m51

r O
k51

P

~Yk
~m! 2 Ok

~m!!2 (9)

where r is the number of experimental data used
in the training. The input and the output vari-
ables are normalized in the range [0, 1]. The back-
propagation algorithm was used to adjust the
weights.15

EXPERIMENTAL

Four different i-PP resins, referred as A, B, C and
D, were kindly donated by OPP Petroquı́mica do
Brasil.

Molecular weight distributions of the resins
were determined by GPC using a Waters Model
150C GPC apparatus at 145°C with trichloroben-
zene as solvent. Table I presents the average mo-
lecular weights and polydispersity of the resins.

Rectangular samples of the resins were pre-
pared by injection molding in a Pic-Boy injection
molding machine; the barrel temperature was
200°C, and the mold temperature was 25°C. From
these rectangular samples, disks of 25 mm diam-
eter and 1 mm thickness were cut and used in the
rheological measurements.

The G9(v) and G0(v) measurements were per-
formed with a Rheometrics Model SR200 con-
trolled tension rheometer at five different temper-
atures (180, 190, 200, 215, and 230°C). The par-
allel plates were 25 mm diameter with a 1 mm
gap between the plates. The frequency span was
varied between 0.01 and 500 rad/as

DATA TREATMENT

The G9(v) and G0(v) curves are used as input
information for the neural network along with the
temperature at which the rheological measure-
ments were carried out. Each curve was digitized
as 25 points, at previously chosen frequencies cov-
ering the range of interest. Most of the measured
experimental points coincided with these frequen-
cies. When the measurement was not available at
these particular frequencies, the corresponding
values of G9 and G0 were obtained by interpola-
tion. Therefore, for each run, the input vector
consist of 51 values (25 values of G9, 25 values of
G0, and one temperature).

Each experimentally measured MWD curve
was also digitized as 26 points by interpolating
the GPC curves at specified molecular weight val-
ues covering the range of interest. Therefore, for
each run, the output vector consists of 26 values

Table I Number- and Weight-Average
Molecular Weights and Polydispersity
of the Resins

Resin Mn Mw Mw/Mn

A 48,900 301,900 6.17
B 75,100 448,800 5.98
C 99,600 606,800 6.09
D 98,700 567,400 5.75

Figure 1 Scheme of a feed-forward neural network.
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of the fraction of polymer at each specified molec-
ular weight.

For each of the four isotactic PP resins (A, B, C,
and D), the rheological curves were measured at
five different temperatures (180, 190, 200, 215,
and 230°C), resulting in a total of 20 data sets.

As usual in ANN training, the whole collection
of experimental data was split into two sets, as
follows: one 13-run set was used for training the
ANN, and the other remaining 7-run set was used
for testing the predictive capability of the ANN.
The following data sets were selected to test the
performance of the neural network: A-180, A-200,
B-180, B-215, C-190, C-230, and D-200 (the letter
indicates the polymer sample, and the number
indicates the temperature at which the rheologi-
cal measurements were made). The selection of
training and test sets was made at random.

An important step is the determination of the
most adequate number of neurons in the hidden
layer, NH. Neural networks with different NHs
were tested, according to the criterion of mini-
mum square deviation between the experimental
results and the calculated output from the ANN,
for the test set. The minimum number of neurons
in the hidden layer that met this criterion and
simultaneously prevent overfitting problems was
NH 5 2, as shown in Figure 2. A total of 10,000
iterations or cycles of the backpropagation algo-
rithm were used in all cases (this number was
also determined from previous tests to prevent
overtraining).

RESULTS AND DISCUSSION

A sample of the storage and loss moduli is shown
in Figure 3. In our earlier work,12 we showed that
the use of the BSW model to calculate the MWD of
these resins failed to fit their GPC curves well.
The low-molecular-weight fractions were not de-
tected by that model; therefore, the calculated
MWD curve was narrower and higher than the
experimental GPC curves. A sample of this result
is presented in Figure 4.

On the other hand, the results obtained with
the neural network were excellent, in close agree-
ment with the experimentally measured GPC
curves. Figure 5 shows the comparison between
experimental and calculated values of w(log
MW), the weight fraction of polymer at each spec-
ified molecular weight, for the learning set and for
the test set. The experimental and calculated
MWD curves for the test set are shown in Figure

6. One can see that, after being adequately
trained, the ANN model is able to extract the
MWD information from the rheological curves
correctly, even when rheological curves were de-
termined over a limited frequency span, as in the
present work (the ANN treatment was used for
each individual temperature, without using any
temperature–time superposition). In addition,
the ANN training is able to accommodate and
filter spurious behavior caused by equipment lim-
itations (for example, the descending part of
G9(v) curves observed at high frequencies in the
present case).

In comparison to the conventional treatment,
the only drawback of the ANN is that it is a fully

Figure 2 Effect of the number of cycles and the num-
ber of neurons in the hidden layer on the mean qua-
dratic deviation.
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“black box” model, in the sense that no physical
meaning can be associated with the network pa-
rameters (the adjusted weights). In fact, as a
purely empirical model, the ANN is strongly de-
pendent on the “calibration,” that is, the avail-
ability and the quality of the experimental data
used in the training, as well as the domain cov-
ered by these data. On the other hand, the ANN

procedure overcomes several difficulties encoun-
tered in the conventional treatment, especially for
crystalline polymers, offering the possibility of a
reliable method for obtaining rapid measure-
ments of MWD.

More work is required to extend the results of
the treatment proposed here to wider domains,
different polymers, and bimodal MWDs.

Figure 3 Storage and loss moduli curves measured for an i-PP resin (resin A).

Figure 4 Comparison between the experimental MWD curve (GPC) and the curve
obtained from conventional data treatment (relaxation spectrum, BWS model, and
Tikhonov regularization).

1420 GIUDICI, SCURACCHIO, AND BRETAS



The authors thank Prof. C.A.O. Nascimento for
providing the neural network software used in
this work, Prof. Frank Quina for revising the manu-
script, OPP Petroquı́mica for supplying the resins,
and FAPESP, CNPq, and CAPES for their sup-
port.

NOTATION

E quadratic deviation between the ex-
perimental and predicted values

F(M, t) relaxation function

Figure 5 Comparison between experimental and calculated values of w(log MW), the
weight fraction of polymer at each specified molecular weight, for the learning set and
for the test set.
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G9(v) shear storage modulus
G0(v) shear loss modulus
G(t) relaxation modulus
GN

0 plateau modulus
Je

0 equilibrium compliance
N number of input variables

NH number of neurons in the hidden layer
Ok output variable of the neuron k of the

output layer
Oj output variable of the neuron j of the

hidden layer
P number of output variables

Figure 6 Comparison between experimental and calculated MWD curves for the test set.

1422 GIUDICI, SCURACCHIO, AND BRETAS



r number of experimental data (input–
output pairs) used in the training

Sk weighted sum of the inputs to the neu-
ron k in the output layer

Sj weighted sum of the inputs to the neu-
ron j in the hidden layer

Yk experimental values for the output
variable k

Xi input variable I of the neural network
x dummy variable
wi weight fraction of polymer chains with

molecular weight Mi

Wi, j,
Wj,k neural network weights

Greek Letters

t relaxation time
a a constant (5 0.56)
h0(M) zero-shear viscosity of a monodisperse

polymer of molecular weight M

Superscripts

(m) point in learning set
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